Reagents. In a typical run, to a stirred solution of sulfoxide **15 (251** mg, **1.0** mmol) in THF **(10** mL) was added **1.58** M n-butyllithium $(0.13 \text{ mL}, 0.2 \text{ mmol})$ under N_2 atmosphere at -78 °C . The mixture was stirred for **15** min at **-78 "C.** After hydrolysis and extraction with dichloromethane $(3 \times 20 \text{ mL})$, the extract was dried with anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel; eluent, hexane/ \vec{Et} OAc = **713)** to give n-butyl p-tolyl sulfoxide (5a) in **13%** and recovered sulfoxide 15 in 83% yield. Optical rotation $([\alpha]_D^{25})$ of the recovered sulfoxide 15 is 0° ($c = 1.0$, acetone).

Reactions of '80-Labeled Phenyl p-Tolyl Sulfoxide **(4c)** with *n* -Butyllithium. The reaction was carried out according to the same procedure of the optically active sulfoxide 4b with n-butyllithium. The products were separated by column and preparative liquid chromatography, and their *'80* contents were determined by mass spectrometry. The ¹⁸O content of each sulfoxide is **38** atom %.

Cross-Over Reaction of **180-Labeled** Diphenyl Sulfoxide (7b) and Unlabeled Di-p-tolyl Sulfoxide **(8)** with Phenyllithium. To a solution of sulfoxide 7b **(101** mg, 0.5 mmol) and di-p-tolyl sulfoxide **(8,115** mg, 0.5 mmol) in THF **(10** mL) under **N2** atmosphere at **-78 "C** was added **1.8** M phenyllithium **(0.11** mL , 0.2 mmol) in ether/cyclohexane solution. After 15 min, water was added and the mixture was extracted with dichloromethane $(3 \times 20 \text{ mL})$. The extract was dried with anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by preparative liquid chromatography to afford diphenyl sulfoxide in **26%,** phenyl p-tolyl sulfoxide in **51** %, and di-p-tolyl sulfoxide in **17%** yield. The *'80* contents of three sulfoxides are **19** atom % by mass spectrometry.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research on Priority Area No. **02247101** from the Ministry of Education, Science and Culture of Japan.

Redox-Initiated Per(po1y)fluoroalkylation of Olefins by Per(po1y)fluoroalkyl Chlorides

Chang-Ming Hu* and Feng-Ling Qing

Shanghai Znstitute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032, China

Received August 29, 1990

The **per(po1y)fluoroalkylation** of olefins by per(po1y)fluoroalkyl chlorides, initiated by ammonium persulfate/sodium formate $((NH_4)_2S_2O_8/HCO_2Na)$, is described. The reaction proceeds smoothly in polar aprotic solvents. The presence of functional groups like sodium carboxylate or sulfonate in the polyfluoroalkyl chloride appear to facilitate the reaction. The reaction appears to be initiated by a single-electron transfer, represents the first example of the reactivity of per(po1y)fluoroalkyl chlorides, and also demonstrates their use **as** per- (po1y)fluoroaJkylating agents. For **a-chloro-w-iodoperfluoroalkanes** only the carbon-iodine bond is cleaved during the reaction. *An* explanation for the apparent stability of the carbon-chlorine bond in such compounds is given.

Introduction

The development of methods for introducing per- (po1y)fluoroalkyl groups into organic molecules is an important goal of synthetic organic chemistry. Traditional methods involve the addition of organofluorine compounds like R_fX (X = I, Br, CCl₃, SO₂Cl, SO₂Br, or SO₂Na) to alkenes and alkynes.' Such additions are commonly catalyzed by peroxides,² main-group metals,³ transitionmetal complexes,⁴ or $\text{Na}_2\text{S}_2\text{O}_4$.⁵ Whether the additions occur through a free-radical, ionic, or single-electrontransfer (SET) mechanism, the reactivity of $-CF_2X$ generally decreases in the following order:⁶ CF₂I > CCl₃ \sim $CF₂Br > CFCl₂$. Until now, nearly all per(poly)fluoroalkylations have involved the use of R_fI , R_fBr , or R_fCCl_3 .

Table I. Yields of the Adducts R_fCH₂CH₂R (1-10) from the **Per(po1y)fluoroalkylation** of Olefins **(CH,==CHR)** by &Cl

\sim 0.1 (post) is not changed in the contract (case \sim and \sim , \sim , \sim				
	R _r Cl	$CH2=CHR$	isolated	
adduct ^a	$R_f =$	$R =$	yield (%)	
	$(CF_2)_8$ OC $F_2CF_2SO_3Na$	$n\text{-}C_4H_9$	87	
2	$(CF2)8OCF2CF2SO3Na$	$n\text{-}C_5H_{11}$	79	
3	$(CF2)8OCF2CF3$	$n\text{-}C_5H_{11}$	76	
4	$(CF2)8OCF2CF3$	CH ₂ Br	52	
5	$(CF_2)_8$ OC F_2CF_3	CH ₂ OAc	74	
6	$(CF_2)_6$ COONa	$n - C_5H_{11}$	87°	
7	(CF ₂) ₇ COONa	CH ₂ OAc	74°	
8	(CF ₂) ₇ COONa	$n\text{-}C_4H_9$	85°	
9	(CF_2) ₇ COONa	$n\text{-}C_5H_{11}$	67 ^a	
10	$(CF2)7$ COONa	$CH2SiCH3$ ₃	69ª	

^a The yield is that of the corresponding methyl ester RCH₂CH₂- (CF_2) _nCOOCH₃ ($n = 6, 7$), formed by treating the initial product with methanolic H₂SO₄.

Because they apparently are stable in the presence of various initiators, few reports dealing with the use of R.&FC12 **as per(po1y)fluoroalkylating** agents have appeared in the literature. Perfluoroalkyl chlorides, R_fCF_2Cl , appear to be chemically inert and are thermally stable up to 600 ^oC, even in the presence of NO₂.⁷ Thus, such compounds have never been reported to be useful for synthetic work.

Although the redox telomerization of fluorine-containing olefinic monomers is rather well-known, the redox-initiated

^{(1) (}a) Sheppard, W. A.; Sharts, C. M. Organic Fluorine Chemistry;
Benjamin W. A.: New York, 1969; Chapter 6. (b) Burton, D. J.; Rehoe,
L. J. J. Org. Chem. 1970, 35, 1339. (c) Dudrhiri-Hasssani, M.; Brunel, D.;
Germain, A

⁽²⁾ Hudlicky, M. *Chemistry of Organofluorine Compounds,* **2nd ed.; Ellis, Horwoord Chicheater, England, 1976.**

⁽³⁾ Chen, Q.-Y.; Qiu, ZM.; Yang, Z.-Y. *J. Fluorine Chem.* **1987,36, 149.**

⁽⁴⁾ Fuchikami, T.; Ojima, I. *Tetrahedron Lett.* **1984,3, 303. (5) Haung, W.-Y.; Wang, W.; Haung, B.-N.** *Acta Chin. Sin.* **1986,44,**

^{488.}

^{- ...&}lt;br>(6) (a) Moore, L. O. *Can. J. Chem.* 1971, 49, 666. (b) Rozhkov, I.;
Becker, G.; Igumnov, S.; Pletnev, S.; Rempel, G.; Borisov, Yu. *J. Fluorine*
Chem. 1989, 45, 114. (c) Kim, Y. K. *J. Org. Chem.* 1967, 32, 3673.

⁽⁷⁾ Serverson, W. A.; Brice, T. J. *J. Am. Chem. SOC.* **1958,80, 2313.**

Table II. Effect of X of $Cl(CF_2)_7X$ **on the Per(po1y)fluoroalkylation of 1-Heptene**

R.CI	temp (°C)		time (h) conversion ^{a} (%)
$Cl(CF_2)$ ₇ COONa	50		100
Cl(CF ₂) ₇ COOMe	50		76
Cl(CF ₂) ₇ COOH	60	15	45

^aDetermined by IBF NMR.

radical addition of polyhaloallranes to olefins **has** been little studied. For example, Burton reported the CuIethanolamine-catalyzed addition of polyhaloqlkanes to 1-octene. Recent work by us⁸ showed that, when initiated by the reaction of certain redox pairs, nearly chemically inert 1,1,2-trichlorotrifluoroethane (ClCF₂CFCl₂) can add to alkenes and **alkynes** under mild conditions. Such results encouraged us to test the effectiveness of various redox pairs in catalyzing the reactions of R.CF.Cl. We found that, in the presence of the redox pair $(NH_4)_2S_2O_8/$ HCO₂Na, per(poly)fluoroalkyl chlorides undergo facile radical addition to olefins.

Results and Discussion

In the presence of an equimolar mixture of $(NH_4)_2S_2O_8$ and HCO₂Na.2H₂O, the per(poly)fluoroalkylation of olefins by R&l proceeded smoothly in DMF or DMSO suspension at **40-60** "C over 4-6 h to give the corresponding per- (po1y)fluoroalkanes (eq 1) in good yield. The results are shown in Table I.

Table I.
\n
$$
R_fCl + CH_2=CHR \rightarrow R_fCH_2CH_2R
$$
\n(1)
\n(1-10)

Addition does not occur below 40 °C. For example, when an equimolar mixture of **3-oxa-11-chloroperfluoro**undecane sulfonyl fluoride $(Cl(CF_2)_8OCF_2CF_2SO_2F)$, 1hexene, $(NH_4)_2S_2O_8$, and $HCO_2Na.2H_2O$ in DMF was warmed at 35°C for 6 h, only $\text{Cl}(\text{CF}_2)_8 \text{OCF}_2 \text{CF}_2 \text{SO}_3$ Na was formed. However, at **40** "C, under otherwise identical conditions, the desired product **(1)** was formed in excellent yield. *H* and extended multionary interesting to $\sqrt{P_{\text{A}}} = (P_{\text{A}}P_{\text{A}})P_{\text{A}}P_{\text{B}}$
 $\Delta P_{\text{A}} = (N_{\text{A}}P_{\text{A}})P_{\text{A}}P_{\text{B}}Q_{\text{B}}$, and $HCO_2N\text{a} \cdot 2H_2O$ in DMF was

warmed at 35 °C for 6 h, only Cl(CF₂)₈OCF

The **per(poly)fluoroalkylation** of olefins by R_tCl is quite solvent sensitive. In aqueous $CH₃CN$, no reaction occurred, even after 10 h at 50 °C.

Disubstituted olefins like cyclohexene were **also** reactive (eq 2).

RI, = (CF2)7COOCH3

The presence of other functional groups in the polyfluoroalkyl chloride affects the reaction. Thus, when C1- $(CF_2)_7X$ (X = COONa, COOMe, COOH) was allowed to react with 1-heptene, the extent of conversion to the product depended on the nature of X (Table 11).

With **a-chloro-w-iodoperfluoroalkanes,** only the carbon-iodine bond is cleaved. For example, in the presence of a catalytic amount of the redox pair, $Cl(CF_2)_nI$ $(n = 4,$ 6) reacted smoothly with 1-heptene to give **12** (or **13).** The carbon-chlorine bond remained **intact,** even when the mole ratio $(NH_4)_2S_2O_8/HCO_2Na/1$ -heptene/Cl(CF₂)_nI was changed to 3:3:41 (eq 3). Cleavage of the carbon-chlorine bond was observed only after the iodine atom of $Cl(CF_2)_nI$ was replaced by SO_3 Na. Thus, compounds 14 $(n = 4)$ and **15** *(n* = 6) reacted with 1-heptene to yield **16** and **17** (eq 4). These phenomena will be explained later.

4). These phenomena will be explained later.
\nCl(CF₂)_nI + n-C₅H₁₁CH=CH₂ →
\nCl(CF₂)_nCH₂CH₁₂CH₂CH₂CH₃ (3)
\n12 (n = 4); 13 (n = 6)
\nCl(CF₂)_nI
$$
\frac{Ne_2S_2O_4}{NaHCO_3}
$$
 Cl(CF₂)_nSO₂Na $\frac{Cl_2}{}$
\nCl(CF₂)_nSO₂Cl $\frac{NeOH}{}$ Cl(CF₂)_nSO₃Na
\n14 (n = 4); 15 (n = 6)
\nCl(CF₂)_nSO₃Na + n-C₅H₁₁CH=CH₂ →
\nCH₂CH₂ →
\nCH₂CH₂ (CH₂) (CH₂) SO₃Na (4)

$$
\text{Cl}(CF_2)_n\text{SO}_3\text{Na} + n\text{-}C_5\text{H}_{11}\text{CH}=\text{CH}_2 \rightarrow
$$
\n
$$
\text{CH}_3(\text{CH}_2)_6(\text{CF}_2)_n\text{SO}_3\text{Na} \text{ (4)}
$$
\n
$$
16 (n = 4); 17 (n = 16)
$$

Diallyl ether has been widely used **as** a probe to show that a reaction proceeds by a radical mechanism. 9 The reaction of $Cl(\overline{CF}_2)$ ₇COONa with allyl ether, initiated by the reaction of the redox pair, produced the cyclic adduct **18 (eq 5). This result implies that a radical intermediate** is formed during the reaction.
 $R_{\text{C}}I$ + (CH₂=CHCH₂)₂O - CH₃ - CH₂R₁ H₂SO₄MoOH_, is formed during the reaction.

R₁ = (CF₂)-COONa
\n
$$
R_1 = (CF_2)-COONa
$$

\n 18
\n CH_3 CH_2R_1 (5)
\n 19
\n $R_1 = (CF_2)-COONa$

Ammonium persulfate is a one-electron oxidant that spontaneously decomposes to SO₄⁻⁻. When (NH₄)₂S₂O₈ and $\mathrm{HCO_2Na}$ are mixed together, $\mathrm{CO_2}^{\bullet-}$ is formed.¹ Experiments showed that the presence of both $(NH_4)_2S_2O_8$ and $HCO₂Na·2H₂O$ was necessary for the per(poly)fluoroalkylation of olefins by R.Cl to occur. It thus seems likely that the reaction is initiated by the transfer of a single electron to R_rCl from CO_2 ⁻⁻ rather than from SO_4 ⁻⁻. The intermediate R_f ^{\cdot} radical could be trapped by *t*-BuNO. Mixtures of the redox couple and R_rCl that also contained t-BuNO displayed a strong, persistent, and well-resolved $(\alpha_N = 11.87 \text{ G}, \alpha_F = 18.94 \text{ G})$ ESR spectrum attributable to the nitroxide radical t -Bu₂N(O*)R_f. Because the carbon-chlorine bond of perfluoroalkyl chlorides is strong, R_fCH_2CHR , the product of the addition of R_f ⁺ to the olefins cannot abstract a chlorine atom from **R&1** to form R_fCH₂CH(Cl)R. Instead, it abstracts a hydrogen atom, presumably from the solvent, to form $R₁CH₂CH₂R$. The best results were obtained when the mole ratio R_fCl / $(NH_4)_{2}S_2O_8/HCO_2Na.2H_2O$ was 1:0.5-1:1. It is thus obvious that the reaction is not a conventional radical chain process. A tentative mechanism for the addition is shown in Scheme I.

$$
\begin{aligned}\n\text{Scheme I} \\
\text{S}_2\text{O}_8^{2-} \rightarrow 2\text{SO}_4 \cdot \text{-} \\
\text{SO}_4 \cdot + \text{HCO}_2 \cdot \rightarrow \text{HSO}_4 \cdot + \text{CO}_2 \cdot \text{-} \\
\text{R}_f\text{Cl} + \text{CO}_2 \cdot \text{-} \rightarrow \text{R}_f \cdot + \text{CO}_2 + \text{Cl} \cdot \\
\text{R}_f \cdot + \text{CH}_2 \rightleftharpoons \text{CHR} \rightarrow \text{R}_f\text{CH}_2\text{CHR} \xrightarrow{\text{H}} \text{R}_f\text{CH}_2\text{CH}_2\text{R}\n\end{aligned}
$$

⁽⁸⁾ Hu, C.-M.; Qing, F.-L. *Tetrahedron Lett.* **1990,** *9,* **1307.**

⁽⁹⁾ Beckwith, A. L. **J.; Easton, C. J.; Lawrene, T.; Serelie, A. K.** *Aust. J. Chem.* **1983,36,545.**

⁽¹⁰⁾ Janzel, E. G. *Free Rad. Res. Commun.* **1988,4359.**

On the other hand, when $Cl(CF_2)_nI$ was allowed to react with an olefin in the presence of $(NH_4)_2S_2O_8/HCOONa$, the carbon-iodine bond was cleaved to begin a classic radical chain process (Scheme 11). Thus, only a catalytic

Scheme **I1**

$$
\begin{aligned}\n\text{Scheme II} \\
\text{Co}_2^{\bullet-} + \text{R}_r\text{I} \rightarrow \text{R}_r^{\bullet} + \text{CO}_2 + \text{I}^{\bullet} \\
\text{R}_r^{\bullet} + \text{CH}_2\text{=CHR} \rightarrow \text{R}_r\text{CH}_2\text{CHR} \xrightarrow{\text{R}_r\text{I}} \\
\text{R}_r\text{CH}_2\text{CH(I)R} + \text{R}_r^{\bullet}\n\end{aligned}
$$

amount of initiator was required.

According to Scheme 11, iodide ion would be formed during the course of an $(\text{NH}_4)_2\text{S}_2\text{O}_8/\text{HCO}_2\text{Na} \cdot 2\text{H}_2\text{O}$ -ini-
 $= 4 \text{ Hz, CH}_3$), 1.57 (m, 8 H, 4×CH₂), 2.83 (m, 2 H, CH₂CF₂) ppm;
 $= 4 \text{ Hz, CH}_3$), 1.57 (m, 8 H, 4×CH₂), 2.83 (m, 2 H, CH₂CF₂) ppm tiated addition of $Cl(CF_2)_nI$ to an alkene. Because iodide ion is a one-electron reductant,¹¹ it would be oxidized by ammonium persulfate to iodine (Scheme 111). Thus, the formation of the carbon dioxide **anion** radical would be suppressed. Because the presence of $CO₂$ ^{$-$} is necessary for the carbon-chlorine bond to be cleaved (Scheme I), in its absence the carbon-chlorine bond of an α -chloro- ω iodoperfluoroalkane remains intact.

Scheme **I11**

Scheme III

\n
$$
I^{-} + SO_{4}^{--} \rightarrow I^{+} + SO_{4}^{2-}
$$
\n
$$
2I^{+} \rightarrow I_{2}
$$
\n
$$
I_{2} + HCO_{2}Na \rightarrow CO_{2} + HI + NaI
$$

In conclusion, a convenient and practical method for the **per(po1y)fluoroalkylation** of olefins by per(po1y)fluoroalkyl chlorides has been developed. Apparently, the reaction is initiated by CO_2 ^{*}, which is generated by a reaction between the two members of the redox pairs $(NH_4)_2S_2O_8$ and $HCO₂Na$.

Experimental Section

General. Melting and boiling points are uncorrected. Infrared spectra of liquid films or KBr pellets were recorded with a Perkin-Elmer **983** spectrometer. 'H NMR spectra *(60* Hz) were recorded with a Varian EM-360A instrument. TMS served **as** an internal standard. ¹⁹F NMR spectra (56.4 Hz) were recorded with a Varian EM-360L instrument. CFCl₃ served as an external standard. Chemical **shifts** (in ppm) **are** negative in sign for upfield **shifts.** Mass spectra were recorded with a Finnigan **GC-MS-4021** spectrometer.

Preparation of $Cl(CF_2)_8OCF_2CF_2SO_2F.^{12}$ A 200-mL pressure vessel was charged with anhydrous KF **(12** g, **0.21** mol), diglyme **(35** mL), tetrafluoroethane sulfone **(30** g, **0.16** mol), and excess Cl₂. The mixture was shaken for 10 min, and then 6**chloroperfluoro-1-hexene (35.5** g, **0.11** mol) was added. The mixture was shaken at 40 °C for 6 h and then was poured into ice/water. The two liquid layers that formed were separated. The organic layer was washed with water, dried, and distilled to give **19.0 g of Cl(CF₂)₈OCF₂CF₂SO₂F (62% yield, bp 182 °C).**

Preparation of $CF_3CF_2O(CF_2)_8Cl^{12}$ **A mixture of** CoF_3 **(32.5)** g) and $CI(CF_2)_8OCF_2CF_2SO_2F$ (76 g) was heated, with stirring, at 195 °C for 6 h. The crude product was washed with water, dried, and fractionally distilled to give $CF_3CF_2O(CF_2)_8Cl$.

Preparation of $CI(CF_2)_nI^{13}$ **An evacuated 2-L autoclave was** charged with **1-chloro-2-iodotetrafluoroethane (1048** g, **4** mol) and tetrafluoroethene **(250** g, **2.5** mol). The mixture was then heated at 170-180 °C for 5 h, during which time the pressure within the autoclave decreased from **36** kg/cm to **17.5** kg/cm. Fractional distillation of the crude mixture of telomeric products gave **405 g** of Cl(CF2)J (bp **104-105** "C), **253** g of Cl(CF2)eI (bp **68** OC **(45**

mmHg)), and 134 g of Cl(CF₂)₈I (bp 72-73 °C (12 mmHg)). $Cl(\widetilde{CF}_2)_n COONa$ was prepared from $Cl(CF_2)_nI^{14}$

Per(poly)fluoroalkylation of Olefins by Cl(CF₂₎₈OCF₂C- F_2SO_2F . General Procedure. A mixture of $Cl(CF_2)_8OCF_2C$ - F_2SO_2F (6.4 g, 10 mmol), an olefin (12.5 mmol), $(NH_4)2S_2O_8(2.3)$ **g, 10** mmol), HC02Na.2Hz0 **(1.1** g, **110** mmol), and DMF **(30** mL) was stirred at 40 °C for 4 h. The mixture was then poured into water, and the whole was extracted thrice with EtOAc. The extract was washed with aqueous $NaHCO₃$ and brine and dried $(Na₂SO₄)$. Evaporation of the solvent and two recrystallizations of the residue from water gave the pure product **(1** or **2).**

1: mp 92-94 °C; ¹⁹F NMR (CD₃COCD₃) -83.1 (s, 2 F, CF₂O), **(8, 2** F, CF2SO3Na), **-122.1** *(8,* **8** F, 4xCFz), **-124.4 (e, 2** F, CF2), -126.4 (s, 2 **F**, CF_2) ppm; ¹H NMR (CD₃COCD₃) 1.07 (t, 3 H, J IR 1070 (s, SO_3 Na) cm⁻¹. Anal. Calcd for $C_{16}H_{13}F_{20}O_4$ SNa: C, **27.27;** H, **1.85;** F, **53.89.** Found C, **27.08;** H, **1.77;** F, **52.59. 2:** mp **106-109** "C; *'9* **NMR** (CD,COCD,) **-83.1 (s,2** F, CFzO), (s, 2 F, CF₂SO₃Na), -122.8 (s, 8 F, 4×CF₂), -124.4 (s, 2 F, CF₂), -126.4 (s, 2 F, CF₂), -126.4 (s, 2 F, CF₂), $=4$ Hz, CH₃), 1.62 (m, 10 H, 5×CH₂), 2.92 (m, 2 H, CH₂CF₂) ppm; IR 1065 (s, SO_3Na) cm⁻¹. Anal. Calcd for $C_{17}H_{15}F_{20}O_4SNa$: C, **28.41;** H, **2.01;** F, **52.92.** Found: C, **28.76;** H, **2.6;** F, **51.89. -84.1 (s, 2 F, CF₂O), -114.5 (t, 2 F, J = 18.8 Hz, CF₂CH₂), -119.5 -84.1** (s, 2 F, CF₂O), -115.0 (t, 2 F, $\tilde{J} = 18.8$ Hz, CF₂CH₂), $-1\overline{19.1}$

Per(poly)fluoroalkylation of Olefins by $CF_3CF_2O(CF_2)_8Cl$. General Procedure. A mixture of $CF_3CF_2O(CF_2)_8Cl$ (5.7 g, 10 mmol), olefin **(12.5** mmol), (NHl)2S208 **(2.3** g, **10** mmol), HC-**OzNa-2Hz0 (1.1** g, **10** mmol), and DMF **(30** mL) was stirred at 50 °C for 7 h. The mixture was then poured into water, and the whole was extracted with Et_2O (3×30 mL). The extract was washed with brine and dried $(\mathrm{Na}_2\mathrm{SO}_4).$ Evaporation of the solvent and distillation of the residue under reduced pressure gave the pure product (3, **4,** or **5).**

3 bp **135-137** "C **(2** mmHg); lgF NMR (neat) **-82.4 (s,3** F, $= 18.8$ Hz, CF_2CH_2 , -122.8 (s, 10 F , $5 \times CF_2$), -126.4 (s, 2 F , CF_2)
ppm; ¹H NMR (neat) 0.99 (t, 3 H , $J = 3.8$ Hz, CH₃), 1.48 (m, 10 H, 5xCHz), **2.76** (m, **2** H, CH2CFz) ppm; mass spectrum *m/e* (relative intensity) **43** (CaH7, **1001, 634** (M, **1.85).** Anal. Calcd for C₁₇H₁₅F₂₁O: C, 32.18; H, 2.36; F, 62.93. Found: C, 32.34; H, **2.42;** F, **61.96.** CF₃), -84.1 (s, 2 F, CF₂O), -89.1 (s, 2 F, CF₂O), -118.1 (t, 2 F, J

4: bp $154-155$ °C (2 mmHg) ; ¹⁹F NMR (neat) -81.8 $(s, 3 F, CF_3)$, -83.5 $(s, 2 F, CF_2O)$, -87.8 $(s, 2 F, CF_2O)$, -117.1 $(t, 2 F, J)$ ppm; 'H NMR (neat) **2.75-2.95 (m, 4 H,** CF2CHzCHz), **3.85** (m, 2 H, CH₂Br); mass spectrum m/e (relative intensity) 69 (CF₃, 100), **657** (M, **7.67).** Anal. Calcd for C13HsFz10Br: C, **23.74;** H, **0.91;** F, **60.73.** Found: C, **23.58;** H, **0.84;** F, **61.22. CF₃**, -83.5 (s, 2 F, CF₂O), -87.8 (s, 2 F, CF₂O), -117.1 (t, 2 F, J
= 18.8 Hz, CF₂CH₂), -121.8 (s, 10 F, 5XCF₂), -129.4 (s, 2 F, CF₂)

5: bp **146-148** OC **(2** mmHg); 19F NMR (neat) **-82.8** (s, **3 F,** ppm; 'H NMR (neat) **2.17** (s, **3** H, CH,O), **2.22-2.85** (m, **4** H, $CH_2CH_2CF_2$), 4.40 (t, 2 H, $J = 4$ Hz, CH_2O) ppm; IR 1750 (s, $C=O$) cm⁻¹; mass spectrum m/e (relative intensity) 59 (CH₃COO, 100), 637 $(M + 1, 62.45)$. Anal. Calcd for C₁₅H₉F₂₁O₃: C, 28.30; H, **1.42;** F, **62.73.** Found: C, **28.36;** H, **1.45;** F, **61.93.** CF_3), -84.5 (s, 2 F, CF_2O), -89.1 (s, 2 F, CF_2O), -119.8 (t, 2 F, $J = 18.7$ Hz, CF_2CH_2), -122.8 (s, 10 F, 5×CF₂), -127.4 (s, 2 F, CF₂)

Per(poly)fluoroalkylation of Olefins by Cl(CF₂)_nCOONa $(n = 6, 7)$. General Procedure. A mixture of $Cl(CF_2)_nCOONa$ **(10** mmol), olefin **(12.5** mmol), (NH4)2Sz0s **(2.3** g, **10** mmol), HCOzNa-2H20 **(1.1** g, **10** mmol), and DMF **(30** mL) was stirred at 50 °C for 4 h. The mixture was then poured into water, and the whole was extracted with EtOAc **(30** mL). The extract was washed with aqueous NaHCO₃ and then, repeatedly, with brine. Evaporation of the solvent from the extract gave a white solid. This was dissolved in $CH₃OH$ (10 mL). Concentrated $H₂SO₄$ (10 **mL)** was added to the methanol solution and the mixture was stirred for **7-8** h at **70** "C. The mixture was then poured into water, and the whole was extracted with $Et₂O$. The extract was washed with aqueous NaHCO₃ and brine and then was dried $(Na₂SO₄)$. Evaporation of the solvent and distillation of the residue under reduced pressure gave the pure product **(6,7,8,** 9, **10, 11,** or **19).**

~~ ~ ~~~

⁽¹¹⁾ Beckwith, A. G. J.; Meiji, G. F. *J. Org. Chem.* 1987, *52*, 1922.
(12) Guo, C.-Y.; Zhang, Y.-F.; Chen, Q.-Y*. Acta Chim. Sin.* 198**2**, *40*, **828**

⁽¹³⁾ zhmg, Y.-F.; Gou, C.-Y.; Zhou, X.-Y.; Chen, Q.-Y. *Acta Chim. Sin.* **1982,** *40,* **330.**

Redox-Initiated **Per(po1y)fluoroalkylation**

6: bp 134-135 °C (5 mmHg); ¹⁹F NMR (neat) -115.1 (t, 2 F, J = 18.8 Hz, CF,CH,), 19.1 **(a,** 2 F, CF2COOMe), -122.4 (s,6 F, $3{\times}C\mathrm{F}_2$), -124.1 *(s, 2 F, CF₂)* ppm; ¹H NMR *(neat)* 0.90 *(t, 3 H,* $J = 4$ Hz, CH₃), 1.30 (m, 10 H, 5×CH₂), 2.56-2.76 (m, 2 H, $CF₂CH₂$), 3.9 *(s, 3 H, OCH₃)* ppm; IR 1785 *(s, C*= O) cm⁻¹; mass spectrum m/e (relative intensity) 43 (C₃H₇, 100), 459 (M + 1, 1.35). Anal. Calcd for C₁₅H₁₈F₁₂O₂: C, 39.30; H, 3.93; F, 49.78. Found: C, 39.39; H, 3.91; F, 48.98.

7: bp $118-120$ °C (2 mmHg); ¹⁹F NMR (neat) -115.5 (t, 2 F, $J = 18.6$ Hz, CF_2CH_2), -119.8 *(s, 2 F, CF₂COOMe), -122.4 (s, 10* F, $5 \times CF_2$) ppm; ¹H NMR (neat) 2.06 (m, 7 H, CH₃CO + $CF_2CH_2CH_2$, 3.96 (s, 3 H, CH₃O), 4.4 (m, 2 H, CH₂O) ppm; IR 1780 $(s, C=0)$ cm⁻¹; mass spectrum m/e (relative intensity) 59 (CH₃COO, 100), 511 (M + 1, 1.71). Anal. Calcd for $C_{14}H_{12}F_{14}O_4$: C, 32.94; H, 2.35; F, 52.16. Found: C, 32.84; H, 2.30; F, 53.06. *⁸*bp 105-106 "C (2 mmHg); **'q** NMR (neat) -114.8 (t, 2 F,

 $J = 18.8$ Hz, CF_2CH_2), -119.1 (s, 2 F, CF_2COONa), -122.1 (s, 6) F, $3 \times CF_2$, -123.1 (s, 2 F , CF_2), -124.2 (s, 2 F , CF_2) ppm; ¹H NMR (neat) 0.95 (t, 3 H, $J = 4$ Hz, CH₃), 1.57 (m, 8 H, $4 \times$ CH₂), 2.56 (m, 2 H, CH₂CF₂), 3.97 (s, 3 H, CH₃O) ppm; IR 1788 (s, C=O) cm⁻¹; mass spectrum m/e (relative intensity) 43 (C₃H₇, 100), 495 $(M + 1, 6.71)$. Anal. Calcd for C₁₅H₁₆F₁₄O₂: C, 36.44; H, 3.24: F, 53.85. Found: C, 37.14; H, 3.28; F, 52.92.
9: bp 108–109 °C (2 mmHg); ¹⁹F NMR (neat) -115.1 (t, 2 F,

 $J = 18.8$ Hz, CF_2CH_2), -120.6 (s, 2 F, CF_2COOMe), -123.9 (s, 10) F, $5 \times CF_2$) ppm; ^IH NMR (neat) 1.07 (t, 3 H, $J = 4$ Hz, CH₂), 1.72 $(m, 10 \text{ H}, 5 \times \text{CH}_2)$, 2.08 $(m, 2 \text{ H}, \text{CH}_2\text{CF}_2)$, 3.85 $(s, 3 \text{ H}, \text{OCH}_3)$ ppm; mass spectrum m/e (relative intensity) 43 (C_3H_7 , 100), 509 (M + 1, 2.50). Anal. Calcd for $C_{16}H_{18}F_{14}O_2$: C, 37.79; H, 3.54; F, 52.36. Found: C, 36.97; H, 3.44; F, 51.08.

10: bp 145-147 OC (5 mmHg); *'8F* NMR (neat) -115.1 (t, 2 F, 10 F, 5xCF,) ppm; 'H NMR (neat) 0.00 **(a,** 9 H, Si(CH,),), 0.65-0.85 (m, 2 H, CH₂Si), 1.65-2.85 (m, 4 H, CF₂CH₂CH₂), 3.85 $(s, 3 H, OCH₃)$ ppm; IR 1775 $(s, C=O)$ cm⁻¹; mass spectrum m/e (relative intensity) 59 (CH₃COO, 100), 525 (M + 1, 2.50). Anal. Calcd for $C_{16}H_{18}F_{14}O_2Si$: C, 34.35; H, 3.44; F, 50.76. Found: C, 34.68; H, 3.69; F, 50.18. $J = 18.8 \text{ Hz}$, CF₂CH₂), -117.5 (s, 2 F, CF₂COOCH₃), -122.8 (s,

11: bp 156-158 °C (5 mmHg); ¹⁹F NMR (neat) -119.5 (s, 4 F, CF_2COOCH_3 and $CF_2C_6H_{11}$, -122.8 *(s, 6 F, 3*×CF₂), -123.4 *(s,* 4 F, 2×CF₂) ppm; ¹H NMR (neat) 1.20-2.20 (m, 11 H, C₆H₁₁), 3.8 (s, 3 H, COOCH₃) ppm; **IR 1785 (s, C**=O) cm⁻¹; mass spectrum 3.8 (s, 3 H, COOCH₃) ppm; IR 1785 (s, C—O) cm⁻¹; mass spectrum m/e (relative intensity) 83 (C₆H₁₁, 100), 493 (M + 1, 3.47). Anal. Calcd for $C_{16}H_{14}F_{14}O_2$: C, 36.58; H, 2.85; F, 54.07. Found: C, 36.30; H, 2.84; F, 54.66.

19: bp 168-170 °C (5 mmHg); ¹⁹F NMR (neat) -114.4 (t, 2 F, 6 F, $3 \times CF_2$, -126.1 (s, 4 F, $2 \times CF_2$) ppm; ¹H NMR (neat) 1.50 (t, 3 H, $J = 4$ Hz, CH₃), 2.73-3.30 (m, 4 H, CF₂CH₂, CHCH), 4.2-4.53 (m, 4 H, CHzOCHz), 4.6 *(8,* 3 H, COOCH,) ppm; IR 1782 $(s, C=0)$ cm⁻¹; mass spectrum m/e (relative intensity) 69 (C₄H₆O, 100), 509 (M + 1, 1.22). Anal. Calcd for $C_{15}H_{14}F_{14}O_3$: C, 35.43; H, 2.75; F, 52.36. Found: C, 35.32; H, 2.71; F, 53.02. $J = 18.8$ Hz, CF_2CH_2), -119.5 (s, 2 F, CF_2COOCH_3), -122.4 (s,

Addition of $Cl(CF_2)_nI$ $(n = 4, 6)$ to 1-Heptene. General **Procedure.** A mixture of $\text{Cl(CF}_2)$ _nI (5 mmol), 1-heptene (1.9 g, 20 mmol), (NH₄)₂S₂O₈ (3.5 g, 15 mmol), HCO₂Na.2H₂O (1.6 g, 15 mmol), and DMF (30 mL) was stirred at 40° C for $3-4$ h. The mixture was then poured into water, and the whole was extracted thrice with Et₂O. The extract was washed with brine and dried $(Na₂SO₄)$. Evaporation of the solvent and distillation of the residue under reduced pressure gave the pure product (12 or 13).

12: 92% yield; bp 76-78 °C (5 mmHg); ¹⁹F NMR (neat) -68.5 2 F , CF₂), -123.4 (s, 2 F, CF₂) ppm; ¹H NMR (neat) 1.05 (m, 3 H, CH,), 1.45 (m, **8** H, 4XCH,), 2.85 (m, 2 H, CF,CH,), 4.35 (m, 1 H, CHI) ppm; IR 1445 (m, CHI) cm-'. Anal. Calcd for $(s, 2 \text{ F}, \text{CF}_2\text{Cl})$, -114.1 (t, $2 \text{ F}, J = 18.8 \text{ Hz}, \text{CF}_2\text{CH}_2$), -120.1 *(s,*

 $C_{11}H_{14}F_8CH: C, 28.67; H, 3.04; F, 33.00.$ Found: C, 28.72; H, 3.09; F, 33.23.

13 86% yield; bp 107-108 "C (5 mmHg); **'9** *NMR* (neat) -68.5 2 F, CF₂), -122.4 *(s, 4 F, 2*×CF₂), -124.1 *(s, 2 F, CF₂)* ppm; ¹H NMR (neat) 0.98 (m, 3 H, CH₃), 1.40 (m, 8 H, 4×CH₂), 2.85 (m, 2 H, CF₂CH₂), 4.32 (m, 1 H, CHI) ppm; IR 1450 (m, CHI) cm⁻¹. Anal. Calcd for $C_{13}H_{14}F_{12}$ ClI: C, 27.83; H, 2.49; F, 40.68. Found: C, 27.96; H, 2.35; F, 41.32. $(s, 2 \text{ F}, \text{CF}_2\text{Cl})$, -114.1 (t, $2 \text{ F}, J = 18.8 \text{ Hz}, \text{CF}_2\text{CH}_2$), -121.1 (s,

Conversion of $Cl(CF_2)_nI$ ($n = 4, 6$) into $Cl(CF_2)_nSO_3N$ a. General Procedure. A mixture of $Cl(CF_2)_nI$ (20 mmol), $Na_2S_2O_4$ (5.3 g, 30 mmol), NaHCO₃ (1.7 g, 20 mmol), CH₃CN (15 mL), and $H₂O$ (45 mL) was stirred at 70 °C for 3 h. The mixture was then poured into a mixture of EtOAc (100 mL) and brine (50 mL). The two liquid layers that formed were separated. The organic layer was washed repeatedly with brine and dried $(Na₂SO₄)$. Evaporation of the solvent gave a white solid. This was dissolved in $H₂O$ (50 mL). Then $Cl₂$ gas was bubbled through the solution at rt for 1 h, during which time two liquid layers formed. The two were separated. Aqueous NaOH was added to the organic layer, and the mixture was stirred at rt for 1.5 h. Then, the mixture was poured into a mixture of EtOAc and brine. The two liquid layers that formed were separated. The organic layer was washed with brine and dried (Na₂SO₄). Evaporation of the solvent gave the pure product (14 or 15).

14: 72% yield; ¹⁹F NMR (CH₃COOC₂H₅) -69.2 (s, 2 F, CF₂Cl), -113.3 (s, 2 F, CF₂SO₃Na), -119.8 (s, 2 F, CF₂), -121.8 (s, 2 F, CF₂) ppm; IR 1070 *(8,* S0,Na) cm-'.

15: 67% yield; **'BF** NMR (CH3COOC2H5) -68.1 (s,2 F, CFzCl), -114.8 (s, 2 F, CF₂SO₃Na), -120.3 (s, 8 F, $4 \times CF_2$) ppm; IR 1065 (s, SO_sNa) cm⁻¹.

Per(poly)fluoroalkylation of 1-Heptene by Cl(CF₂)_nSO₃Na *(n* = 4,6). General Procedure. Application of a method **similar** to that used for the addition of $Cl(\dot{CF}_2)_8OCF_2CF_2SO_2F$ to olefins gave 16 and 17.

16: 64% yield; ¹⁹F NMR (CD₃COCD₃) -114.1 (t, 2 F, $J = 18.8$ Hz, CFzCHz), -116.8 **(s,** 2 F, CF2S03Na), -120.4 *(8,* 2 F, CF,), -122.8 (s, 2 F, CF₂) ppm; ¹H NMR (CD₃COCD₃) 0.97 (m, 3 H, CH₃), 1.30-1.65 (m, 10 H, 5 \times CH₂), 2.70 (m, 2 H, CH₂CF₂) ppm; IR 1070 *(s, SO₃Na)* cm⁻¹. Anal. Calcd for $C_{11}H_{15}F_8O_3SNa$: C, 32.84; H, 3.73; F, 37.81. Found: C, 31.94; H, 3.70; F, 36.98. 17 77% yield; **'9** NMR (CD3COCD3) -113.1 (t, 2 F, J = 18.8 Hz, CF₂CH₂), -114.8 (s, 2 F, CF₂SO₃Na), -121.4 (s, 6 F, 3×CF₂), -123.8 **(s,2** F, CF,) ppm; 'H NMR (CD,COCD,) 1.08 (m, 3 H,

CH₃), 1.35-1.62 (m, 10 H, 5×CH₂), 2.96 (m, 2 H, CH₂CF₂) ppm; IR 1070 **(s, SO₃Na)** cm⁻¹. Anal Calcd for $C_{13}H_{15}F_{12}O_3SNa$: C, 31.08; H, 2.99; F, 45.42. Found: C, 30.79; H, 2.62; F, 46.72.

Acknowledgment. We acknowledge helpful discussions with Prof. Xi-Kui Jiang.

Registry No. 1, 136176-28-8; 2, 136176-29-9; 3, 136176-30-2; 4, 136176-31-3; **5,** 136176-32-4; 6,136176-33-5; 7,136176-34-6; **8,** 136176-35-7; 9,136176-36-8; 10,136176-37-9; 11,136176-38-0; 12 *(n* = 4), 103147-30-4; 13 *(n* = 6), 103190-37-0; 14 *(n* = 4), 136176-39-1; 15 *(n* = 6), 136176-40-4; 16 *(n* = 4), 136176-41-5; 17 *(n* = 6), 136176-42-6; 18,136176-43-7; 19,136176-44-8; HO,S(C- F_2 ₂O(CF₂)₈Cl-Na, 136176-45-9; CF₃CF₂O(CF₂)₈Cl, 84014-97-1; $\overline{\text{Cl}(\text{CF}_2)_6\text{CO}_2\text{H-Na}}$, 136176-46-0; $\overline{\text{Cl}(\text{CF}_2)}_7\text{CO}_2\text{H-Na}$, 136176-47-1; $H_2C=CHCH_2Br$, 106-95-6; $H_2C=CHCH_2OAc$, 591-87-7; $H_2C=$ H₂C=CH(CH₂)₃CH₃, 592-41-6; H₂C=CH(CH₂)₄CH₃, 592-76-7; CHCH₂TMS, 762-72-1; Cl(CF₂)₄I, 5848-38-4; Cl(CF₂)_eI, 16486-97-8; $(CH_2=CHCH_2)_2O$, 557-40-4; CHF₂CF₂SO₂F, 82106-27-2; Cl(C- F_2)₄CF=CF₂, 31001-56-6; Cl(CF₂)₈O(CF₂)₂SO₂F, 73606-15-2; \overline{C} l($\overline{C}F_2$)₈I, 16486-98-9; Cl($\overline{CF_2}$)₂I, 421-78-3; $\overline{F}_2C = \overline{CF_2}$, 116-14-3; $(NH_4)_2S_2O_8$, 7727-54-0; HCO_2Na , 141-53-7; cyclohexene, 110-83-8.