Reagents. In a typical run, to a stirred solution of sulfoxide 15 (251 mg, 1.0 mmol) in THF (10 mL) was added 1.58 M *n*-butyllithium (0.13 mL, 0.2 mmol) under N₂ atmosphere at -78 °C. The mixture was stirred for 15 min at -78 °C. After hydrolysis and extraction with dichloromethane (3 × 20 mL), the extract was dried with anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel; eluent, hexane/EtOAc = 7/3) to give *n*-butyl *p*-tolyl sulfoxide (5a) in 13% and recovered sulfoxide 15 in 83% yield. Optical rotation ($[\alpha]_D^{25}$) of the recovered sulfoxide 15 is 0° (c = 1.0, acetone).

Reactions of ¹⁸O-Labeled Phenyl p-Tolyl Sulfoxide (4c) with *n*-Butyllithium. The reaction was carried out according to the same procedure of the optically active sulfoxide 4b with *n*-butyllithium. The products were separated by column and preparative liquid chromatography, and their ¹⁸O contents were determined by mass spectrometry. The ¹⁸O content of each sulfoxide is 38 atom %. Cross-Over Reaction of ¹⁸O-Labeled Diphenyl Sulfoxide (7b) and Unlabeled Di-*p*-tolyl Sulfoxide (8) with Phenyllithium. To a solution of sulfoxide 7b (101 mg, 0.5 mmol) and di-*p*-tolyl sulfoxide (8, 115 mg, 0.5 mmol) in THF (10 mL) under N₂ atmosphere at -78 °C was added 1.8 M phenyllithium (0.11 mL, 0.2 mmol) in ether/cyclohexane solution. After 15 min, water was added and the mixture was extracted with dichloromethane (3 × 20 mL). The extract was dried with anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by preparative liquid chromatography to afford diphenyl sulfoxide in 26%, phenyl *p*-tolyl sulfoxide in 51%, and di-*p*-tolyl sulfoxide in 17% yield. The ¹⁸O contents of three sulfoxides are 19 atom % by mass spectrometry.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research on Priority Area No. 02247101 from the Ministry of Education, Science and Culture of Japan.

Redox-Initiated Per(poly)fluoroalkylation of Olefins by Per(poly)fluoroalkyl Chlorides

Chang-Ming Hu* and Feng-Ling Qing

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032, China

Received August 29, 1990

The per(poly)fluoroalkylation of olefins by per(poly)fluoroalkyl chlorides, initiated by ammonium persulfate/sodium formate ($(NH_4)_2S_2O_8/HCO_2Na$), is described. The reaction proceeds smoothly in polar aprotic solvents. The presence of functional groups like sodium carboxylate or sulfonate in the polyfluoroalkyl chloride appear to facilitate the reaction. The reaction appears to be initiated by a single-electron transfer, represents the first example of the reactivity of per(poly)fluoroalkyl chlorides, and also demonstrates their use as per-(poly)fluoroalkylating agents. For α -chloro- ω -iodoperfluoroalkanes only the carbon-iodine bond is cleaved during the reaction. An explanation for the apparent stability of the carbon-chlorine bond in such compounds is given.

Introduction

The development of methods for introducing per-(poly)fluoroalkyl groups into organic molecules is an important goal of synthetic organic chemistry. Traditional methods involve the addition of organofluorine compounds like R_fX (X = I, Br, CCl₃, SO₂Cl, SO₂Br, or SO₂Na) to alkenes and alkynes.¹ Such additions are commonly catalyzed by peroxides,² main-group metals,³ transitionmetal complexes,⁴ or Na₂S₂O₄.⁵ Whether the additions occur through a free-radical, ionic, or single-electrontransfer (SET) mechanism, the reactivity of $-CF_2X$ generally decreases in the following order:⁶ $CF_2I > CCl_3 \sim$ $CF_2Br > CFCl_2$. Until now, nearly all per(poly)fluoroalkylations have involved the use of R_fI , R_fBr , or R_fCCl_3 .

Table I. Yields of the Adducts R_fCH₂CH₂R (1-10) from the Per(poly)fluoroalkylation of Olefins (CH₃—CHR) by R_fCl

rer(poly)muoroankylation of Chemins (Chi3-Chic) by Iden				
	R _r Cl	CH2=CHR	isolated	
adduct	$R_{f} =$	R =	yield (%)	
1	(CF ₂) ₈ OCF ₂ CF ₂ SO ₃ Na	n-C ₄ H ₉	87	
2	(CF ₂) ₈ OCF ₂ CF ₂ SO ₃ Na	$n - C_5 H_{11}$	79	
3	$(CF_2)_8 OCF_2 CF_3$	$n - C_5 H_{11}$	76	
4	$(CF_2)_8 OCF_2 CF_3$	CH ₂ Br	52	
5	(CF ₂) ₈ OCF ₂ CF ₃	CH ₂ OAc	74	
6	(CF ₂) ₆ COONa	$n-C_5H_{11}$	87ª	
7	$(CF_2)_7 COONa$	CH ₂ OAc	74ª	
8	(CF ₂) ₇ COONa	$n-C_4H_9$	85°	
9	(CF ₂) ₇ COONa	$n - C_5 H_{11}$	67ª	
10	(CF ₂) ₇ COONa	CH ₂ Si(CH ₃) ₃	69ª	

^a The yield is that of the corresponding methyl ester RCH₂CH₂- $(CF_2)_nCOOCH_3$ (n = 6, 7), formed by treating the initial product with methanolic H₂SO₄.

Because they apparently are stable in the presence of various initiators, few reports dealing with the use of R_tCFCl_2 as per(poly)fluoroalkylating agents have appeared in the literature. Perfluoroalkyl chlorides, R_tCF_2Cl , appear to be chemically inert and are thermally stable up to 600 °C, even in the presence of NO₂.⁷ Thus, such compounds have never been reported to be useful for synthetic work.

Although the redox telomerization of fluorine-containing olefinic monomers is rather well-known, the redox-initiated

 ^{(1) (}a) Sheppard, W. A.; Sharts, C. M. Organic Fluorine Chemistry; Benjamin W. A.: New York, 1969; Chapter 6. (b) Burton, D. J.; Rehoe, L. J. J. Org. Chem. 1970, 35, 1339. (c) Dudrhiri-Hassani, M.; Brunel, D.; Germain, A.; Commeyras, A. J. Fluorine Chem. 1984, 25, 49. (d) Huang, W.-Y.; Chen, J.-L.; Hu, L.-Q. Bull. Soc. Chim. Fr. 1986, 6, 681. (e) Huang, W.-Y.; Hu, L.-Q.; Xie, Y. Acta Chim. Sin. (Engl. Ed.) 1989, 190.
 (2) Hudlicky, M. Chemistra of Organetic Legistic Constants of Order detection.

⁽²⁾ Hudlicky, M. Chemistry of Organofluorine Compounds, 2nd ed.;
Ellis, Horwoord: Chichester, England, 1976.
(3) Chen, Q.-Y.; Qiu, Z-M.; Yang, Z.-Y. J. Fluorine Chem. 1987, 36,

⁽⁵⁾ Chen, g.-1., g.d., 2-M., 1ang, 2.-1. J. Fluorine Chem. 1567, 36 149.

 ⁽⁴⁾ Fuchikami, T.; Ojima, I. Tetrahedron Lett. 1984, 3, 303.
 (5) Haung, W.-Y.; Wang, W.; Haung, B.-N. Acta Chim. Sin. 1986, 44,

^{488. (6) (}c) Moore I O Can I Cham 1971 40 666 (b) Parkhav I

^{(6) (}a) Moore, L. O. Can. J. Chem. 1971, 49, 666. (b) Rozhkov, I.; Becker, G.; Igumnov, S.; Pletnev, S.; Rempel, G.; Borisov, Yu. J. Fluorine Chem. 1989, 45, 114. (c) Kim, Y. K. J. Org. Chem. 1967, 32, 3673.

⁽⁷⁾ Serverson, W. A.; Brice, T. J. J. Am. Chem. Soc. 1958, 80, 2313.

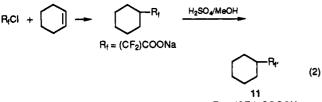
Table II. Effect of X of Cl(CF₂)₇X on the Per(poly)fluoroalkylation of 1-Heptene

R _f Cl	temp (°C)	time (h)	conversion ^a (%)
Cl(CF ₂) ₇ COONa	50	4	100
Cl(CF ₂) ₇ COOMe	50	8	76
Cl(CF ₂) ₇ COOH	60	15	45

^a Determined by ¹⁹F NMR.

radical addition of polyhaloalkanes to olefins has been little studied. For example, Burton reported the CuIethanolamine-catalyzed addition of polyhaloalkanes to 1-octene. Recent work by us⁸ showed that, when initiated by the reaction of certain redox pairs, nearly chemically inert 1,1,2-trichlorotrifluoroethane (ClCF₂CFCl₂) can add to alkenes and alkynes under mild conditions. Such results encouraged us to test the effectiveness of various redox pairs in catalyzing the reactions of R_fCF_2CI . We found that, in the presence of the redox pair (NH₄)₂S₂O₈/ HCO₂Na, per(poly)fluoroalkyl chlorides undergo facile radical addition to olefins.

Results and Discussion


In the presence of an equimolar mixture of $(NH_4)_2S_2O_8$ and $HCO_2Na\cdot 2H_2O$, the per(poly)fluoroalkylation of olefins by R₄Cl proceeded smoothly in DMF or DMSO suspension at 40–60 °C over 4–6 h to give the corresponding per-(poly)fluoroalkanes (eq 1) in good yield. The results are shown in Table I.

$$R_{f}Cl + CH_{2} \longrightarrow CHR \rightarrow R_{f}CH_{2}CH_{2}R \qquad (1)$$
(1)

Addition does not occur below 40 °C. For example, when an equimolar mixture of 3-oxa-11-chloroperfluoroundecane sulfonyl fluoride ($Cl(CF_2)_8OCF_2CF_2SO_2F$), 1hexene, (NH_4)₂S₂O₈, and $HCO_2Na\cdot2H_2O$ in DMF was warmed at 35 °C for 6 h, only $Cl(CF_2)_8OCF_2CF_2SO_3Na$ was formed. However, at 40 °C, under otherwise identical conditions, the desired product (1) was formed in excellent yield.

The per(poly)fluoroalkylation of olefins by R_fCl is quite solvent sensitive. In aqueous CH_3CN , no reaction occurred, even after 10 h at 50 °C.

Disubstituted olefins like cyclohexene were also reactive (eq 2).

 $\mathsf{R}_{\mathsf{f}}=(\mathsf{CF}_2)_7\mathsf{COOCH}_3$

The presence of other functional groups in the polyfluoroalkyl chloride affects the reaction. Thus, when $Cl-(CF_2)_7X$ (X = COONa, COOMe, COOH) was allowed to react with 1-heptene, the extent of conversion to the product depended on the nature of X (Table II).

With α -chloro- ω -iodoperfluoroalkanes, only the carbon-iodine bond is cleaved. For example, in the presence of a catalytic amount of the redox pair, $\operatorname{Cl}(\operatorname{CF}_2)_n I$ (n = 4,6) reacted smoothly with 1-heptene to give 12 (or 13). The carbon-chlorine bond remained intact, even when the mole ratio $(\mathrm{NH}_4)_2 \mathrm{S}_2 \mathrm{O}_8/\mathrm{HCO}_2 \mathrm{Na}/1$ -heptene/ $\operatorname{Cl}(\operatorname{CF}_2)_n I$ was changed to 3:3:4:1 (eq 3). Cleavage of the carbon-chlorine bond was observed only after the iodine atom of $\operatorname{Cl}(\operatorname{CF}_2)_n I$ was replaced by SO₃Na. Thus, compounds 14 (n = 4) and 15 (n = 6) reacted with 1-heptene to yield 16 and 17 (eq 4). These phenomena will be explained later.

$$Cl(CF_{2})_{n}I + n \cdot C_{5}H_{11}CH = CH_{2} \rightarrow Cl(CF_{2})_{n}CH_{2}CH(I)(CH_{2})_{4}CH_{3} (3)$$

$$12 (n = 4); 13 (n = 6)$$

$$Cl(CF_{2})_{n}I \xrightarrow{Na_{2}S_{2}O_{4}}{NaHCO_{3}} Cl(CF_{2})_{n}SO_{2}Na \xrightarrow{Cl_{2}}{Cl(CF_{2})_{n}SO_{2}Cl} \xrightarrow{NaOH}{Cl(CF_{2})_{n}SO_{3}Na}$$

$$Cl(CF_{2})_{n}SO_{2}Cl \xrightarrow{NaOH}{Cl(CF_{2})_{n}SO_{3}Na}$$

$$Cl(CF_{2})_{n}SO_{2}Cl \xrightarrow{NaOH}{Cl(CF_{2})_{n}SO_{3}Na}$$

$$Cl(CF_{2})_{n}SO_{2}Cl \xrightarrow{NaOH}{Cl(CF_{2})_{n}SO_{3}Na}$$

$$Cl(CF_{2})_{n}SO_{2}Cl \xrightarrow{NaOH}{Cl(CF_{2})_{n}SO_{3}Na}$$

$$Cl(CF_{2})_{n}SO_{2}Na + n \cdot CH = CH_{2} \rightarrow CH_{2}$$

$$Cl(CF_2)_n SO_3Na + n - C_5H_{11}CH = CH_2 \rightarrow CH_3(CH_2)_6(CF_2)_n SO_3Na$$
(4)
16 (n = 4); 17 (n = 16)

Diallyl ether has been widely used as a probe to show that a reaction proceeds by a radical mechanism.⁹ The reaction of $Cl(CF_2)_7COONa$ with allyl ether, initiated by the reaction of the redox pair, produced the cyclic adduct 18 (eq 5). This result implies that a radical intermediate is formed during the reaction.

$$R_{1}CI + (CH_{2} = CHCH_{2})_{2}O \xrightarrow{CH_{3}} CH_{2}R_{1} \xrightarrow{H_{2}SO_{4}/MeOH} 18$$

$$R_{1} = (CF_{2})_{7}COONa$$

$$CH_{3} \xrightarrow{CH_{2}R_{1}} CH_{2}R_{1} \quad (5)$$

$$19$$

$$R_{1} = (CF_{2})_{7}COOMe$$

Ammonium persulfate is a one-electron oxidant that spontaneously decomposes to $SO_4^{\bullet-}$. When $(NH_4)_2S_2O_8$ and HCO_2Na are mixed together, $CO_2^{\bullet-}$ is formed.¹⁰ Experiments showed that the presence of both $(NH_4)_2S_2O_8$ and HCO₂Na·2H₂O was necessary for the per(poly)fluoroalkylation of olefins by R_fCl to occur. It thus seems likely that the reaction is initiated by the transfer of a single electron to R_fCl from CO_2 ⁻ rather than from SO_4 ⁻. The intermediate R_{f} radical could be trapped by *t*-BuNO. Mixtures of the redox couple and RrCl that also contained t-BuNO displayed a strong, persistent, and well-resolved $(\alpha_{\rm N} = 11.87 \text{ G}, \alpha_{\rm F} = 18.94 \text{ G})$ ESR spectrum attributable to the nitroxide radical t-Bu₂N(O[•])R_f. Because the carbon-chlorine bond of perfluoroalkyl chlorides is strong, $R_f CH_2 CHR$, the product of the addition of R_f to the olefins cannot abstract a chlorine atom from RrCl to form R_fCH₂CH(Cl)R. Instead, it abstracts a hydrogen atom, presumably from the solvent, to form $R_fCH_2CH_2R$. The best results were obtained when the mole ratio $R_{f}Cl/$ $(NH_4)_2S_2O_8/HCO_2Na\cdot 2H_2O$ was 1:0.5-1:1. It is thus obvious that the reaction is not a conventional radical chain process. A tentative mechanism for the addition is shown in Scheme I.

Scheme I

$$S_2O_8^{2-} \rightarrow 2SO_4^{*-}$$

$$SO_4^{*-} + HCO_2^{-} \rightarrow HSO_4^{-} + CO_2^{*-}$$

$$R_fCl + CO_2^{*-} \rightarrow R_f^{*} + CO_2 + Cl^{-}$$

$$R_f^{*} + CH_2 = CHR \rightarrow R_fCH_2\dot{C}HR \xrightarrow{H} R_fCH_2CH_2R_1$$

⁽⁸⁾ Hu, C.-M.; Qing, F.-L. Tetrahedron Lett. 1990, 9, 1307.

⁽⁹⁾ Beckwith, A. L. J.; Easton, C. J.; Lawrene, T.; Serelis, A. K. Aust. J. Chem. 1983, 36, 545.

⁽¹⁰⁾ Janzel, E. G. Free Rad. Res. Commun. 1988, 4, 359.

On the other hand, when $Cl(CF_2)_n I$ was allowed to react with an olefin in the presence of $(NH_4)_2S_2O_8/HCOONa$, the carbon-iodine bond was cleaved to begin a classic radical chain process (Scheme II). Thus, only a catalytic

Scheme II $CO_2^{--} + R_f I \rightarrow R_f^{-} + CO_2 + I^ R_f^{-} + CH_2 \longrightarrow R_f CH_2 \dot{C} HR \xrightarrow{R_f I}$ $R_f CH_2 CH(I)R + R_f^{--}$

amount of initiator was required.

According to Scheme II, iodide ion would be formed during the course of an $(NH_4)_2S_2O_8/HCO_2Na\cdot2H_2O$ -initiated addition of $Cl(CF_2)_nI$ to an alkene. Because iodide ion is a one-electron reductant,¹¹ it would be oxidized by ammonium persulfate to iodine (Scheme III). Thus, the formation of the carbon dioxide anion radical would be suppressed. Because the presence of $CO_2^{\bullet-}$ is necessary for the carbon-chlorine bond to be cleaved (Scheme I), in its absence the carbon-chlorine bond of an α -chloro- ω iodoperfluoroalkane remains intact.

Scheme III

$$I^- + SO_4^{*-} \rightarrow I^* + SO_4^{2-}$$
$$2I^* \rightarrow I_2$$
$$I_2 + HCO_2Na \rightarrow CO_2 + HI + NaI$$

In conclusion, a convenient and practical method for the per(poly)fluoroalkylation of olefins by per(poly)fluoroalkyl chlorides has been developed. Apparently, the reaction is initiated by $CO_2^{\bullet-}$, which is generated by a reaction between the two members of the redox pairs $(NH_4)_2S_2O_8$ and HCO_2Na .

Experimental Section

General. Melting and boiling points are uncorrected. Infrared spectra of liquid films or KBr pellets were recorded with a Perkin–Elmer 983 spectrometer. ¹H NMR spectra (60 Hz) were recorded with a Varian EM-360A instrument. TMS served as an internal standard. ¹⁹F NMR spectra (56.4 Hz) were recorded with a Varian EM-360L instrument. CFCl₃ served as an external standard. Chemical shifts (in ppm) are negative in sign for upfield shifts. Mass spectra were recorded with a Finnigan GC-MS-4021 spectrometer.

Preparation of Cl(CF₂)₈OCF₂CF₂SO₂F.¹² A 200-mL pressure vessel was charged with anhydrous KF (12 g, 0.21 mol), diglyme (35 mL), tetrafluoroethane sulfone (30 g, 0.16 mol), and excess Cl₂. The mixture was shaken for 10 min, and then 6-chloroperfluoro-1-hexene (35.5 g, 0.11 mol) was added. The mixture was shaken at 40 °C for 6 h and then was poured into ice/water. The two liquid layers that formed were separated. The organic layer was washed with water, dried, and distilled to give 19.0 g of Cl(CF₂)₈OCF₂CF₂SO₂F (62% yield, bp 182 °C).

19.0 g of Cl(CF₂)₈OCF₂CF₂SO₂F (62% yield, bp 182 °C).
Preparation of CF₃CF₂O(CF₂)₈CL.¹² A mixture of CoF₃ (32.5 g) and Cl(CF₂)₈OCF₂CF₂SO₂F (76 g) was heated, with stirring, at 195 °C for 6 h. The crude product was washed with water, dried, and fractionally distilled to give CF₃CF₂O(CF₂)₈Cl.
Preparation of Cl(CF₂)_nI.¹³ An evacuated 2-L autoclave was

Preparation of Cl(CF₂)_nI.¹³ An evacuated 2-L autoclave was charged with 1-chloro-2-iodotetrafluoroethane (1048 g, 4 mol) and tetrafluoroethene (250 g, 2.5 mol). The mixture was then heated at 170–180 °C for 5 h, during which time the pressure within the autoclave decreased from 36 kg/cm to 17.5 kg/cm. Fractional distillation of the crude mixture of telomeric products gave 405 g of Cl(CF₂)₄I (bp 104–105 °C), 253 g of Cl(CF₂)₆I (bp 68 °C (45

mmHg)), and 134 g of $Cl(CF_2)_8I$ (bp 72-73 °C (12 mmHg)). Cl(CF₂)_nCOONa was prepared from $Cl(CF_2)_nI^{.14}$

Per(poly)fluoroalkylation of Olefins by $Cl(CF_2)_3OCF_2C-F_2SO_2F$. General Procedure. A mixture of $Cl(CF_2)_8OCF_2C-F_2SO_2F$ (6.4 g, 10 mmol), an olefin (12.5 mmol), $(NH_4)_2S_2O_8$ (2.3 g, 10 mmol), $HCO_2Na\cdot 2H_2O$ (1.1 g, 10 mmol), and DMF (30 mL) was stirred at 40 °C for 4 h. The mixture was then poured into water, and the whole was extracted thrice with EtOAc. The extract was washed with aqueous NaHCO₃ and brine and dried (Na_2SO_4) . Evaporation of the solvent and two recrystallizations of the residue from water gave the pure product (1 or 2). 1: mp 92-94 °C; ¹⁹F NMR (CD₃COCD₃) -83.1 (s, 2 F, CF₂O),

1: mp 92–94 °C; ¹⁹F NMR (CD₃COCD₃) -83.1 (s, 2 F, CF₂O), -84.1 (s, 2 F, CF₂O), -114.5 (t, 2 F, J = 18.8 Hz, CF₂CH₂), -119.5 (s, 2 F, CF₂SO₃Na), -122.1 (s, 8 F, 4×CF₂), -124.4 (s, 2 F, CF₂), -126.4 (s, 2 F, CF₂) ppm; ¹H NMR (CD₃COCD₃) 1.07 (t, 3 H, J = 4 Hz, CH₃), 1.57 (m, 8 H, 4×CH₂), 2.83 (m, 2 H, CH₂CF₂) ppm; IR 1070 (s, SO₃Na) cm⁻¹. Anal. Calcd for C₁₆H₁₈F₂₀O₄SNa: C, 27.27; H, 1.85; F, 53.89. Found: C, 27.08; H, 1.77; F, 52.59. 2: mp 106–109 °C; ¹⁹F NMR (CD₃COCD₃) -83.1 (s, 2 F, CF₂O), -84.1 (s, 2 F, CF₂O), -115.0 (t, 2 F, J = 18.8 Hz, CF₂CH₂), -119.1 (s, 2 F, CF₂SO₃Na), -122.8 (s, 8 F, 4×CF₂), -124.4 (s, 2 F, CF₂), -126.4 (s, 2 F, CF₂) ppm; ¹H NMR (CD₃COCD₃) 1.10 (t, 3 H, J = 4 Hz, CH₃), 1.62 (m, 10 H, 5×CH₂), 2.92 (m, 2 H, CH₂CF₂) ppm; IR 1065 (s, SO₃Na) cm⁻¹. Anal. Calcd for C₁₇H₁₆F₂₀O₄SNa: C, 28.41; H, 2.01; F, 52.92. Found: C, 28.76; H, 2.6; F, 51.89.

Per(poly)fluoroalkylation of Olefins by $CF_3CF_2O(CF_2)_8Cl$. General Procedure. A mixture of $CF_3CF_2O(CF_2)_8Cl$ (5.7 g, 10 mmol), olefin (12.5 mmol), $(NH_4)_2S_2O_8$ (2.3 g, 10 mmol), HC- $O_2Na\cdot 2H_2O$ (1.1 g, 10 mmol), and DMF (30 mL) was stirred at 50 °C for 7 h. The mixture was then poured into water, and the whole was extracted with Et_2O (3 × 30 mL). The extract was washed with brine and dried (Na₂SO₄). Evaporation of the solvent and distillation of the residue under reduced pressure gave the pure product (3, 4, or 5). 3: bp 135–137 °C (2 mmHg); ¹⁹F NMR (neat) -82.4 (s, 3 F,

3: bp 135–137 °C (2 mmHg); ¹⁹F NMR (neat) -82.4 (s, 3 F, CF₃), -84.1 (s, 2 F, CF₂O), -89.1 (s, 2 F, CF₂O), -118.1 (t, 2 F, J = 18.8 Hz, CF₂CH₂), -122.8 (s, 10 F, $5 \times CF_2$), -126.4 (s, 2 F, CF₂) ppm; ¹H NMR (neat) 0.99 (t, 3 H, J = 3.8 Hz, CH₃), 1.48 (m, 10 H, $5 \times CH_2$), 2.76 (m, 2 H, CH₂CF₂) ppm; mass spectrum m/e (relative intensity) 43 (C₃H₇, 100), 634 (M, 1.85). Anal. Calcd for C₁₇H₁₆F₂₁O: C, 32.18; H, 2.36; F, 62.93. Found: C, 32.34; H, 2.42; F, 61.96.

4: bp 154-155 °C (2 mmHg); ¹⁹F NMR (neat) -81.8 (s, 3 F, CF₃), -83.5 (s, 2 F, CF₂O), -87.8 (s, 2 F, CF₂O), -117.1 (t, 2 F, J = 18.8 Hz, CF₂CH₂), -121.8 (s, 10 F, $5 \times CF_2$), -129.4 (s, 2 F, CF₂) ppm; ¹H NMR (neat) 2.75-2.95 (m, 4 H, CF₂CH₂CH₂), 3.85 (m, 2 H, CH₂Br); mass spectrum m/e (relative intensity) 69 (CF₃, 100), 657 (M, 7.67). Anal. Calcd for C₁₃H₆F₂₁OBr: C, 23.74; H, 0.91; F, 60.73. Found: C, 23.58; H, 0.84; F, 61.22. 5: bp 146-148 °C (2 mmHg); ¹⁹F NMR (neat) -82.8 (s, 3 F,

5: bp 146-148 °C (2 mmHg); ¹⁹F NMR (neat) -82.8 (s, 3 F, CF₃), -84.5 (s, 2 F, CF₂O), -89.1 (s, 2 F, CF₂O), -119.8 (t, 2 F, J = 18.7 Hz, CF₂CH₂), -122.8 (s, 10 F, $5\times$ CF₂), -127.4 (s, 2 F, CF₂) ppm; ¹H NMR (neat) 2.17 (s, 3 H, CH₃O), 2.22-2.85 (m, 4 H, CH₂CH₂CF₂), 4.40 (t, 2 H, J = 4 Hz, CH₂O) ppm; IR 1750 (s, C=O) cm⁻¹; mass spectrum m/e (relative intensity) 59 (CH₃COO, 100), 637 (M + 1, 62.45). Anal. Calcd for C₁₅H₉F₂₁O₃: C, 28.30; H, 1.42; F, 62.73. Found: C, 28.36; H, 1.45; F, 61.93.

Per(poly)fluoroalkylation of Olefins by $Cl(CF_2)_nCOONa$ (n = 6, 7). General Procedure. A mixture of $Cl(CF_2)_nCOONa$ (10 mmol), olefin (12.5 mmol), $(NH_4)_2S_2O_8$ (2.3 g, 10 mmol), $HCO_2Na\cdot 2H_2O$ (1.1 g, 10 mmol), and DMF (30 mL) was stirred at 50 °C for 4 h. The mixture was then poured into water, and the whole was extracted with EtOAc (30 mL). The extract was washed with aqueous NaHCO₃ and then, repeatedly, with brine. Evaporation of the solvent from the extract gave a white solid. This was dissolved in CH₃OH (10 mL). Concentrated H₂SO₄ (10 mL) was added to the methanol solution and the mixture was stirred for 7-8 h at 70 °C. The mixture was then poured into water, and the whole was extracted with Et₂O. The extract was washed with aqueous NaHCO₃ and brine and then was dried (Na₂SO₄). Evaporation of the solvent and distillation of the residue under reduced pressure gave the pure product (6, 7, 8, 9, 10, 11, or 19).

 ⁽¹¹⁾ Beckwith, A. G. J.; Meiji, G. F. J. Org. Chem. 1987, 52, 1922.
 (12) Guo, C.-Y.; Zhang, Y.-F.; Chen, Q.-Y. Acta Chim. Sin. 1982, 40, 828.

⁽¹³⁾ Zhang, Y.-F.; Gou, C.-Y.; Zhou, X.-Y.; Chen, Q.-Y. Acta Chim. Sin. 1982, 40, 330.

6: bp 134-135 °C (5 mmHg); ¹⁹F NMR (neat) -115.1 (t, 2 F, J = 18.8 Hz, CF₂CH₂), 19.1 (s, 2 F, CF₂COOMe), -122.4 (s, 6 F, $3 \times CF_2$), -124.1 (s, 2 F, CF₂) ppm; ¹H NMR (neat) 0.90 (t, 3 H, J = 4 Hz, CH₃), 1.30 (m, 10 H, $5 \times CH_2$), 2.56-2.76 (m, 2 H, CF₂CH₂), 3.9 (s, 3 H, OCH₃) ppm; IR 1785 (s, C=O) cm⁻¹; mass spectrum m/e (relative intensity) 43 (C₃H₇, 100), 459 (M + 1, 1.35). Anal. Calcd for C₁₅H₁₈F₁₂O₂: C, 39.30; H, 3.93; F, 49.78. Found: C, 39.39; H, 3.91; F, 48.98.

7: bp 118–120 °C (2 mmHg); ¹⁹F NMR (neat) –115.5 (t, 2 F, J = 18.6 Hz, CF₂CH₂), –119.8 (s, 2 F, CF₂COOMe), –122.4 (s, 10 F, 5×CF₂) ppm; ¹H NMR (neat) 2.06 (m, 7 H, CH₃CO + CF₂CH₂CH₂), 3.96 (s, 3 H, CH₃O), 4.4 (m, 2 H, CH₂O) ppm; IR 1780 (s, C=O) cm⁻¹; mass spectrum m/e (relative intensity) 59 (CH₃COO, 100), 511 (M + 1, 1.71). Anal. Calcd for C₁₄H₁₂F₁₄O₄: C, 32.94; H, 2.35; F, 52.16. Found: C, 32.84; H, 2.30; F, 53.06.

C, 32.94; H, 2.35; F, 52.16. Found: C, 32.84; H, 2.30; F, 53.06. 8: bp 105-106 °C (2 mmHg); ¹⁹F NMR (neat) -114.8 (t, 2 F, J = 18.8 Hz, CF₂CH₂), -119.1 (s, 2 F, CF₂COONa), -122.1 (s, 6 F, 3×CF₂), -123.1 (s, 2 F, CF₂), -124.2 (s, 2 F, CF₂) ppm; ¹H NMR (neat) 0.95 (t, 3 H, J = 4 Hz, CH₃), 1.57 (m, 8 H, 4×CH₂), 2.56 (m, 2 H, CH₂CF₂), 3.97 (s, 3 H, CH₃O) ppm; IR 1788 (s, C=O) cm⁻¹; mass spectrum m/e (relative intensity) 43 (C₃H₇, 100), 495 (M + 1, 6.71). Anal. Calcd for C₁₆H₁₆F₁₄O₂: C, 36.44; H, 3.24: F, 53.85. Found: C, 37.14; H, 3.28; F, 52.92.

9: bp 108–109 °C (2 mmHg); ¹⁹F NMR (neat) –115.1 (t, 2 F, $J = 18.8 \text{ Hz}, \text{ CF}_2\text{CH}_2$), –120.6 (s, 2 F, CF₂COOMe), –123.9 (s, 10 F, 5×CF₂) ppm; ¹H NMR (neat) 1.07 (t, 3 H, $J = 4 \text{ Hz}, \text{CH}_3$), 1.72 (m, 10 H, 5×CH₂), 2.08 (m, 2 H, CH₂CF₂), 3.85 (s, 3 H, OCH₃) ppm; mass spectrum m/e (relative intensity) 43 (C₃H₇, 100), 509 (M + 1, 2.50). Anal. Calcd for C₁₆H₁₈F₁₄O₂: C, 37.79; H, 3.54; F, 52.36. Found: C, 36.97; H, 3.44; F, 51.08. 10: bp 145–147 °C (5 mmHg); ¹⁹F NMR (neat) –115.1 (t, 2 F,

10: bp 145-147 °C (5 mmHg); ¹⁹F NMR (neat) -115.1 (t, 2 F, J = 18.8 Hz, CF₂CH₂), -117.5 (s, 2 F, CF₂COOCH₃), -122.8 (s, 10 F, 5×CF₂) ppm; ¹H NMR (neat) 0.00 (s, 9 H, Si(CH₃)₃), 0.65-0.85 (m, 2 H, CH₂Si), 1.65-2.85 (m, 4 H, CF₂CH₂CH₂), 3.85 (s, 3 H, OCH₃) ppm; IR 1775 (s, C=O) cm⁻¹; mass spectrum m/e(relative intensity) 59 (CH₃COO, 100), 525 (M + 1, 2.50). Anal. Calcd for C₁₅H₁₈F₁₄O₂Si: C, 34.35; H, 3.44; F, 50.76. Found: C, 34.68; H, 3.69; F, 50.18.

11: bp 156–158 °C (5 mmHg); ¹⁹F NMR (neat) –119.5 (s, 4 F, CF₂COOCH₃ and CF₂C₆H₁₁), –122.8 (s, 6 F, $3 \times CF_2$), –123.4 (s, 4 F, $2 \times CF_2$) ppm; ¹H NMR (neat) 1.20–2.20 (m, 11 H, C₆H₁₁), 3.8 (s, 3 H, COOCH₃) ppm; IR 1785 (s, C=O) cm⁻¹; mass spectrum m/e (relative intensity) 83 (C₆H₁₁, 100), 493 (M + 1, 3.47). Anal. Calcd for C₁₆H₁₄F₁₄O₂: C, 36.58; H, 2.85; F, 54.07. Found: C, 36.30; H, 2.84; F, 54.66.

19: bp 168-170 °C (5 mmHg); ¹⁹F NMR (neat) -114.4 (t, 2 F, J = 18.8 Hz, CF₂CH₂), -119.5 (s, 2 F, CF₂COOCH₃), -122.4 (s, 6 F, 3×CF₂), -126.1 (s, 4 F, 2×CF₂) ppm; ¹H NMR (neat) 1.50 (t, 3 H, J = 4 Hz, CH₃), 2.73-3.30 (m, 4 H, CF₂CH₂, CHCH), 4.2-4.53 (m, 4 H, CH₂OCH₂), 4.6 (s, 3 H, COOCH₃) ppm; IR 1782 (s, C=O) cm⁻¹; mass spectrum m/e (relative intensity) 69 (C₄H₆O, 100), 509 (M + 1, 1.22). Anal. Calcd for C₁₅H₁₄F₁₄O₃: C, 35.43; H, 2.75; F, 52.36. Found: C, 35.32; H, 2.71; F, 53.02.

Addition of $Cl(CF_2)_n I$ (n = 4, 6) to 1-Heptene. General Procedure. A mixture of $Cl(CF_2)_n I$ (5 mmol), 1-heptene (1.9 g, 20 mmol), $(NH_4)_2S_2O_8$ (3.5 g, 15 mmol), $HCO_2Na\cdot 2H_2O$ (1.6 g, 15 mmol), and DMF (30 mL) was stirred at 40 °C for 3-4 h. The mixture was then poured into water, and the whole was extracted thrice with Et_2O . The extract was washed with brine and dried (Na_2SO_4) . Evaporation of the solvent and distillation of the residue under reduced pressure gave the pure product (12 or 13).

12: 92% yield; bp 76-78 °C (5 mmHg); ¹⁹F NMR (neat) -68.5 (s, 2 F, CF₂Cl), -114.1 (t, 2 F, J = 18.8 Hz, CF₂CH₂), -120.1 (s, 2 F, CF₂), -123.4 (s, 2 F, CF₂) ppm; ¹H NMR (neat) 1.05 (m, 3 H, CH₃), 1.45 (m, 8 H, 4×CH₂), 2.85 (m, 2 H, CF₂CH₂), 4.35 (m, 1 H, CHI) ppm; IR 1445 (m, CHI) cm⁻¹. Anal. Calcd for $C_{11}H_{14}F_8ClI:\ C,\ 28.67;\ H,\ 3.04;\ F,\ 33.00.\ Found:\ C,\ 28.72;\ H,\ 3.09;\ F,\ 33.23.$

13: 86% yield; bp 107-108 °C (5 mmHg); ¹⁹F NMR (neat) -68.5 (s, 2 F, CF₂Cl), -114.1 (t, 2 F, J = 18.8 Hz, CF₂CH₂), -121.1 (s, 2 F, CF₂), -122.4 (s, 4 F, 2×CF₂), -124.1 (s, 2 F, CF₂) ppm; ¹H NMR (neat) 0.98 (m, 3 H, CH₃), 1.40 (m, 8 H, 4×CH₂), 2.85 (m, 2 H, CF₂CH₂), 4.32 (m, 1 H, CHI) ppm; IR 1450 (m, CHI) cm⁻¹. Anal. Calcd for C₁₃H₁₄F₁₂ClI: C, 27.83; H, 2.49; F, 40.68. Found: C, 27.96; H, 2.35; F, 41.32.

Conversion of $Cl(CF_2)_n I$ (n = 4, 6) into $Cl(CF_2)_n SO_3Na$. General Procedure. A mixture of $Cl(CF_2)_n I$ (20 mmol), $Na_2S_2O_4$ (5.3 g, 30 mmol), NaHCO₃ (1.7 g, 20 mmol), CH₃CN (15 mL), and H₂O (45 mL) was stirred at 70 °C for 3 h. The mixture was then poured into a mixture of EtOAc (100 mL) and brine (50 mL). The two liquid layers that formed were separated. The organic layer was washed repeatedly with brine and dried (Na₂SO₄). Evaporation of the solvent gave a white solid. This was dissolved in H₂O (50 mL). Then Cl₂ gas was bubbled through the solution at rt for 1 h, during which time two liquid layers formed. The two were separated. Aqueous NaOH was added to the organic layer, and the mixture was stirred at rt for 1.5 h. Then, the mixture was poured into a mixture of EtOAc and brine. The two liquid layers that formed were separated. The organic layer was washed with brine and dried (Na₂SO₄). Evaporation of the solvent gave the pure product (14 or 15).

14: 72% yield; ¹⁹F NMR (CH₃COOC₂H₅) -69.2 (s, 2 F, CF₂Cl),
 -113.3 (s, 2 F, CF₂SO₃Na), -119.8 (s, 2 F, CF₂), -121.8 (s, 2 F, CF₂)
 ppm; IR 1070 (s, SO₃Na) cm⁻¹.
 15: 67% yield; ¹⁹F NMR (CH₃COOC₂H₅) -68.1 (s, 2 F, CF₂Cl),

15: 67% yield; ¹⁹F NMR (CH₃COOC₂H₅) –68.1 (s, 2 F, CF₂Cl), –114.8 (s, 2 F, CF₂SO₃Na), –120.3 (s, 8 F, 4×CF₂) ppm; IR 1065 (s, SO₃Na) cm⁻¹.

Per(poly)fluoroalkylation of 1-Heptene by $Cl(CF_2)_nSO_3Na$ (*n* = 4, 6). General Procedure. Application of a method similar to that used for the addition of $Cl(CF_2)_8OCF_2CF_2SO_2F$ to olefins gave 16 and 17.

16: 64% yield; ¹⁹F NMR (CD₃COCD₃) -114.1 (t, 2 F, J = 18.8Hz, CF₂CH₂), -116.8 (s, 2 F, CF₂SO₃Na), -120.4 (s, 2 F, CF₂), -122.8 (s, 2 F, CF₂) ppm; ¹H NMR (CD₃COCD₃) 0.97 (m, 3 H, CH₃), 1.30–1.65 (m, 10 H, 5×CH₂), 2.70 (m, 2 H, CH₂CF₂) ppm; IR 1070 (s, SO₃Na) cm⁻¹. Anal. Calcd for C₁₁H₁₅F₆O₃SNa: C, 32.84; H, 3.73; F, 37.81. Found: C, 31.94; H, 3.70; F, 36.98. 17: 77\% yield; ¹⁹F NMR (CD₃COCD₃) -113.1 (t, 2 F, J = 18.8 Hz, CF₂CH₂), -114.8 (s, 2 F, CF₂SO₃Na), -121.4 (s, 6 F, 3×CF₂), -123.8 (s, 2 F, CF₂) ppm; ¹H NMR (CD₃COCD₃) 1.08 (m, 3 H, CH₃), 1.35–1.62 (m, 10 H, 5×CH₂), 2.96 (m, 2 H, CH₂CF₂) ppm; IR 1070 (s, SO₃Na) cm⁻¹. Anal Calcd for C₁₃H₁₅F₁₂O₃SNa: C, 31.08; H, 2.99; F, 45.42. Found: C, 30.79; H, 2.62; F, 46.72.

Acknowledgment. We acknowledge helpful discussions with Prof. Xi-Kui Jiang.

Registry No. 1, 136176-28-8; 2, 136176-29-9; 3, 136176-30-2; 4, 136176-31-3; 5, 136176-32-4; 6, 136176-33-5; 7, 136176-34-6; 8, 136176-35-7; 9, 136176-36-8; 10, 136176-37-9; 11, 136176-38-0; 12 (n = 4), 103147-30-4; 13 (n = 6), 103190-37-0; 14 (n = 4), 136176-39-1; 15 (n = 6), 136176-40-4; 16 (n = 4), 136176-41-5; 17 (n = 6), 136176-42-6; 18, 136176-43-7; 19, 136176-44-8; HO₃S(C-F₂)₂O(CF₂)₈Cl-Na, 136176-45-9; CF₃CF₂O(CF₂)₈Cl, 84014-97-1; Cl(CF₂)₆CO₂H-Na, 136176-46-0; Cl(CF₂)₇CO₂H-Na, 136176-47-1; H₂C=CH(CH₂)₃CH₃, 592-41-6; H₂C=CH(CH₂)₄CH₃, 592-76-7; H₂C=CHCH₂Br, 106-95-6; H₂C=CHCH₂OAc, 591-87-7; H₂C= CHCH₂TMS, 762-72-1; Cl(CF₂)₄I, 5848-38-4; Cl(CF₂)₆I, 16486-97-8; (CH₂=CHCH₂)₂O, 557-40-4; CHF₂CF₂SO₂F, 82106-27-2; Cl(CF F₂)₄CF=CF₂, 31001-56-6; Cl(CF₂)₂O(CF₂)₂SO₂F, 73606-15-2; Cl(CF₂)₈I, 16486-98-9; Cl(CF₂)₂I, 421-78-3; F₂C=CF₂, 116-14-3; (NH₄)₂S₂O₆, 7727-54-0; HCO₂Na, 141-53-7; cyclohexene, 110-83-8.